Object detection for World Robot Summit
TBD
code repository
https://github.com/dongjuns/WRS_ObjectDetection
wrs_coco format
README.MD
pre-print for KROC or else
training phase plot
validation
mAP
code clean up and commit
0. Overview
Detecting the WRS objects for the robot arm to solve pick & place task
1. Dataset
https://github.com/RasmusHaugaard/wrs-data-collection
object classes: 12, 1920 x 1200 pixels, RGBA 4 channels, 250 images
strategy: train 200 images, validation 50 images
2. Object Detection
EfficientDet D0~D7
3. Get the bbox position of the rubber band
3-1. Remove the color threshold for just orange rubber band.
3-2. straight-forward solution: using blender simulation environment, set the camera paremeters and size, position and objects also.
4. Object detection using real time input image
5. Results
Best result: EfficientDet-D4, mAP 0.866
Model | obj1 | obj2 | obj3 | obj4 | obj5 | obj6 | obj7 | obj8 | obj9 | obj10 | obj11 | obj12 | All mAP | FPS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EfficientDet-D0 | 0 | 0.77 | 0.5 | 0.63 | 0.86 | 0.77 | 0.24 | 0.19 | 0.12 | 0.07 | 0.02 | 0.007 | 0.349 | 61 |
EfficientDet-D1 | 0.38 | 0.98 | 0.66 | 0.89 | 0.94 | 0.91 | 0.63 | 0.59 | 0.52 | 0.26 | 0.06 | 0.005 | 0.569 | 50 |
EfficientDet-D2 | 0.87 | 0.99 | 0.68 | 0.96 | 0.95 | 0.92 | 0.77 | 0.71 | 0.85 | 0.68 | 0.43 | 0.14 | 0.746 | 44 |
EfficientDet-D3 | 0.97 | 0.99 | 0.77 | 0.96 | 0.97 | 0.94 | 0.83 | 0.79 | 0.85 | 0.76 | 0.79 | 0.59 | 0.853 | 31 |
EfficientDet-D4 | 0.99 | 1 | 0.48 | 0.96 | 0.99 | 0.97 | 0.88 | 0.81 | 0.9 | 0.83 | 0.86 | 0.74 | 0.866 | 21 |
EfficientDet-D5 | 1 | 0.76 | 0.54 | 0.62 | 0.97 | 0.98 | 0.47 | 0.69 | 0.91 | 0.79 | 0.82 | 0.68 | 0.769 | 13 |
EfficientDet-D6 | 0.99 | 0.64 | 0.51 | 0.49 | 0.99 | 0.98 | 0.35 | 0.77 | 0.92 | 0.78 | 0.77 | 0.68 | 0.74 | 10 |
EfficientDet-D7 | 0.99 | 0.99 | 0.73 | 0.54 | 0.98 | 0.95 | 0.38 | 0.78 | 0.91 | 0.82 | 0.83 | 0.66 | 0.797 | 7 |