Object detection recipe
1.Prepare or download the dataset
Format style, Amount of dataset and labels, Labeling quality, Bbox quality
2.Choose the framework
(1)PyTorch, TensorFlow with keras, mxnet
(1-1)MMDetection, Detectron, SimpleDet
3.Augmentation
DataGenerator, Albumentation, Cut-mix, Mix-up, Mosaic, Insect…
4.Train the models
Faster R-CNN, EfficientDet, Yolo, Recent SOTA model
(Pseudo Labeling)
5.Ensemble
6.TTA
### 1. Introduction
### 2. Data preparation
## 2.1 Load data
## 2.2 Check for null and missing values
## 2.3 Normalization
## 2.4 Reshape
## 2.5 Label encoding
## 2.6 Split training and valdiation set
### 3. CNN
## 3.1 Define the model
## 3.2 Set the optimizer and annealer
## 3.3 Data augmentation
### 4. Evaluate the model
## 4.1 Training and validation curves
## 4.2 Confusion matrix
### 5. Prediction and submition
## 5.1 Predict and Submit results